
Amplifying the Weight-copying Penalty in
Bittensor

(Working Paper)

Opentensor

June 28, 2024

Abstract

We propose an approach to amplify the penalty to validators who copy
or act reactively to other validators’ actions. This approach is designed to
operate concurrently with the commitment scheme [1]. Once this penalty
reaches a certain threshold, it becomes preferable to either perform miner-
evaluation work as intended or delegate their stakes to other validators
who perform such work. The approach that we propose is an adaptive
alpha personalized to each miner.

1 Introduction
This paper is a companion to [1]. We consider the problem of validators who
selfishly report weights that optimize their utility, as opposed to reporting weights
that are informative on the actual performance of miners. We model the utility
of validators as the accumulated dividends received over all future rounds. In
turn, the dividend to a particular validator within a round is determined by a
Markovian process that is controled by a combination of the profile of scores
reported by each validator regarding each miner and the profile of stakes (or
capital of tokens) among validators. This Markovian process is also controled by
a few parameters, including a parameter α that controls the rate of increase of
the “bond” processes.

We define the penalty of a weight-copying validator with respect to a val-
idator who exerts an effort and observes the performance profile of the miners
(i.e., a signal in the language of signaling games) as a difference between the
dividends received by these two validators. We present a solution approach
(called “liquid alpha”) that works in conjunction with the commitment scheme of
[1] and amplifies the penalty of weight-copying validators by replacing the static
parameter α by an adaptive process αt(i) personalized to each miner i.

We present the model and define the notions of weight-copying penalty and
miner-fairness in Section 2. Section 3 presents a heuristic solution approach

1

(dubbed “liquid alpha”) to amplify the weight-copying penalty. Once this penalty
is large enough, there is no reason for a validator to copy another validator’s
weights. We present in Section 4 empirical evidence of the effectiveness—as
well as the limitation—of liquid alpha by simulating an immediate version of
the penalty. Section 5 outlines open problems. We refer the reader to [1] for a
description of related works.

2 Model
The problem of weight copying arises in the interaction between validators1.
The simplest model that describes this interaction is a repeated game between
a set of validators. In such a setting, weight copying is simply the tit-for-tat
strategy [2] where one participant j picks another participant k, and at every
round t plays the same action that k played at the previous round t− 1. This
tit-for-tat strategy has the nice property of creating consensus and improving
the long-term outcome for all players. In Bittensor, however, we do not simply
want consensus: we also want fair weights for miners. Our model must therefore
include miners.

We consider the following model of a repeated game with additional signals
from miners. The set of players is the set of validators Z. There is a set of
miners {1, . . . , d}. At every round t = 1, 2, . . ., each validator j has the option
to observe a signal vj

t ∈ X = ∆d, where ∆d denotes the simplex of probability
vectors {z ∈ Rd

+ :
∑d

i=1 zi = 1}. Each of the d elements corresponds to a miner’s
normalized performance. We assume that the signals2 vj

t are independent and
identically distributed for every round t. The distribution of vj

t is however
unknown. Each validator j also has a stake value Sj associated to it that is
known by all players; we assume that it stays fixed over time3. Without loss of
generality, we assume that

∑
j∈Z Sj = 1.

At round t, each validator j takes a pair of actions

1. ajt ∈ {0, 1}, representing whether the validator does make the effort of
evaluating all the miners. The signal vjt is only observed by j if ajt = 1.

2. wj
t ∈ X , which is the reported weight vector.

The report profile at round t is a profile of reported weights in X |Z|. There pairs
of actions are generated by a strategy as follows. The set of possible histories

1Throughout this paper, a “validator” refers to a subnet validator, as opposed to a validator
(operated by the Opentensor Foundation) that validates blocks on the Bittensor blockchain.
Likewise, a “miner” refers to a subnet miner, as opposed to miners in that propose blocks in
blockchains such as Bitcoin.

2The sequence vj
t essentially replaces the notion of a static type in Bayesian games.

3In practice, this may not be true since validators and their nominators may re-stake the
dividends that they earn over time.

2

observed by j up to round t > 1 is denoted

Ht−1 = (X |Z|︸︷︷︸
reports

× X︸︷︷︸
observed signal

)t−1. (1)

A strategy σ for j is a sequence of mappings from history and current signal to
an action-pair:

σt : Ht−1 × X︸︷︷︸
current signal

→ {0, 1}︸ ︷︷ ︸
effort

× X︸︷︷︸
reported weight

, for all t ≥ 1. (2)

Observe that j does not observe the action akt for other validators, nor the signals
vk
t for other validators. The action-pair can be written as the strategy applied

to the history Ht−1 and signal vjt :

[ajt , w
j
t (a

j
t)] = [σa

t (Ht−1), σ
w
t (Ht−1, v

j
ta

j
t)], (3)

where the decision to spend the effort ajt is only a function of the history Ht−1,
and the reported weight is a function of the current signal vjt whenever a∗t = 1.

2.1 Yuma Consensus and utility functions
To define the utility function for validators, we first introduce the calculation of
dividend shares. Let wj

t (i) denote the validator j’s weight on miner i at time t,
and let wj

t ∈ ∆d denote the normalized vector of weights for j. The consensus
w̄t(i) of miner i is calculated as follows. First, we sort the pairs {(wj

t (i), Sj)}j∈Z
from largest to smallest weight value via permutation π : Z → Z:

w
π(1)
t (i) ≥ w

π(2)
t (i) ≥ . . . (4)

Sπ(1), Sπ(2), . . . (5)

We then look for the smallest partial sum of the sequence Sπ(m) above a parameter
κ > 0:

M∗ = arg min
M=1,...,|Z|

M∑
m=1

Sπ(m) (6)

subject to:
M∑

m=1

Sπ(m) > κ. (7)

Finally, we set w̄t(i) = w
π(M∗)
t (i).

Next, we define the consensus-clipped weight from validator j to miner i.

ŵj
t (i) = min(wj

t (i), w̄t(i)). (8)

Validator trust is definded as the total validator weight after consensus-clipping:

T j =

d∑
i=1

ŵj
t (i). (9)

3

With bonds penalty β ∈ [0, 1], e.g., β = 1 in the implementation, we define stake
weighted as

w̃j
t (i) = (1− β)wj

t (i) + βŵj
t (i). (10)

For a fixed sequence αt, the validator bond that validator j has over miner i
is

∆j
t (i) =

Siw̃
j
t (i)∑

k∈Z Skw̃k
t (i)

, (11)

Bj
t (i) = Bj

t−1(i)− αt[B
j
t−1(i)−∆j

t (i)] (12)

= αt∆
j
t (i) + (1− αt)B

j
t−1(i) (13)

= αt∆
j
t (i) + (1− αt)αt−1∆

j
t−1(i) + . . .+ (1− αt)αt−1 . . . α1B

j
1(i), (14)

Bj
1(i) = 0, for all i. (15)

Lastly, validator j’s dividend-share4 is the sum of bonds scaled by miner incentives
Iit :

Dj
t (w

j
t ,w

−j
t ;α1...t) =

∑
i∈M

Bj
t (i) · Iit , (16)

where α1...t denote the sequence (α1, . . . , αt).
Observe that the process Bj

t (i) is an instance of stochastic approximation
[3], and converges under appropriate conditions. In the current implementation
(before liquid alpha), we have a constant sequence α̃t = α. Observe that when
α̃t = α, we have

Bj
t (i) = α∆j

t (i) +

t−1∑
ℓ=1

(1− α)αℓ∆j
t−ℓ(i) (17)

= α
Siw̃

j
t (i)∑

k∈Z Skw̃k
t (i)

+

t−1∑
ℓ=1

(1− α)αℓ
Siw̃

j
t−ℓ(i)∑

k∈Z Skw̃k
t−ℓ(i)

. (18)

Next, we the miners’ incentives:

Iit = Iit(w) =

∑
j∈Z Sjŵ

j
t (i)∑d

i=1

∑
k∈Z Skŵk

t (i)
(19)

Finally, when the sequence of signals observed by all validators is {v}, the
utility function of j adopting a strategy σ is

uj(σ
j , σ−j ;v) =

∞∑
t=1

γt(Dj
t (w

j
t ,w

−j
t)− µajt), (20)

where µ is the cost of the effort of evaluating all the miners in one round.
4Fractional share of the total amount of dividend from the subnet going to validator j.

4

2.2 Weight-copying penalty
In this paper, our objective is to design a mechanism that amplifies the weight-
copying penalty and in turn amplifies the disadvantage of a validator that copies
weights.

Definition 1 (Weight-copying penalty). Let w̄t ∈ Rd
+ denote the consensus

weight vector at round t. Let validator j denote a validator whose weights follow
the consensus without delay: wj

t = w̄t. Consider a validator k with a delay m > 0
on the weights:

σj = (ajt , w
j
t)t=1,2,..., (21)

σk = (akt , w
k
t)t=1,2,..., (22)

wk
t = wj

t−m. (23)

Suppose without loss of generality that validator j and k both have one unit of
TAO in stake Sj = Sk = 1. The long-term weight-copying penalty of validator k
relative to validator j is

Γ(j, k) = uj(σ
j , σ−j ;v)− uk(σ

k, σ−k;v). (24)

The (immediate) weight-copying penalty of validator k with respect to validator j
is the difference in dividend-share5 at round t:

Gt(j, k) = Dj
t (w

j
t ,w

−j
t)− µajt −Dk

t (w
k
t ,w

−k
t) + µakt . (25)

Remark 1. The notion of weight-copying penalty is similar to the advantage
of the leader in the Stakelberg model of competition [4, 5]. A similar concept of
last-mover advantage or first-mover disadvantage exists in ultimatum bargaining
games.

Our objective is to show that there is a sequence αt such that for every delay
m, the weight-copying penalty is bounded from below:

Γ(j, k) ≥ ϵ(m). (26)

Moreover, if ϵ(m) is larger than the delegate-take of j, then there is no reason
for a validator k to copy validator j when k can instead delegate to j.

2.3 Harmless or beneficial to miners
Next, we define criteria for a mechanism to be harmless or beneficial to miners.
The harmless notion is that of fairness, which we define as follows. In the
verifiable setting, we say that a mechanism is fair among miners if for every
validator j and every round t: if two miners i1 and i2 have the (verifiable)

5The cost of validation is the same for j and k at every round t.

5

error rate, and if wk
t (i1) = wk

t (i2) for all k ̸= j, then validator j maximizes its
dividend-share by assigning the same weight to i1 and i2. In other words, if

wj∗
t ∈ arg max

w∈Rd
Dj

t (w,w
−j
t), (27)

then wj∗
t (i1) = wj∗

t (i2). This definition using the one-round dividend-share
assumes that the validators are myopics; in general, we can present an alternative
definition using the strategy and utility function.

In the following section, we want to find an adaptive sequence αt that is
adapted to the filtration Ft generated by all observed random variables up to
round t and that maximizes the first mover advantage Γ(j, k) for every pair of
validators j and k, while ensuring fairness among miners.

3 Liquid alpha solution
In this section, we propose a method (“liquid alpha” of Algorithm 1) to compute a
sequence αt that amplifies the weight-copying penalty. This method is adaptive—
in the sense that each αt is a function of all previously observed variables at
round t, and personalized to each miner—in the sense that each miner i is
assigned a distinct value αt(i).

If we let αt denote the sequence output by Algorithm 1, and α̃t = 0.9 denote
the constant sequence taking the value of the current implementation of Bittensor,
we define the amplification factor of the weight-copying penalty as

Ht(j, k) =
Gt(j, k;αt)

Gt(j, k; α̃t)
. (32)

Observe that the denominator Gt(j, k; α̃t) is greater than zero due to the com-
mitment scheme introduced in [1].

4 Empirical evidence
In this section, we present empirical evidence that the liquid alpha algorithm
of Algorithm 1 indeed amplifies the advantage of an honest validator j that
performs the validation work and reports the observed signal truthfully, over
another validator k that does not spend the effort of the validation work and
copies the consensus weight. We take as our baseline the advantage of a over b
in setting with the commitment scheme of [1].

4.1 Simulated setting
The evidence in question comes from a simulation of the interactions of three
validators j, k, c and four miners A,B,C,D. We assume that every validator in
{j, k, c} observes the same deterministic signal vt if it chooses to perform the

6

Algorithm 1 Liquid Alpha
Input: Let w̄t = (w̄t)i=1,...,d ∈ Rd denote the vector of consensus weights of
all miners.
Input: Let αH and αL be parameters with default values αH = 0.9 and
αL = 0.7.
Input: Quantiles qH and qL with default values qH = 0.75 and qL = 0.25.
for t = 1, 2, . . . do

Set CH
t to qH -quantile of w̄t.

Set CL
t to qL-quantile of w̄t.

if CH
t ≤ CL

t then
Set fallback value αt(i) = 0.9 for all i = 1, . . . , d,

else
Compute

a =
log(1/αH − 1)− log(1/αL − 1)

CL
t − CH

t

, (28)

b = log(1/αL − 1) + aCL
t , (29)

α̃t(i) =
1

1 + exp(−aw̄t(i) + b)
, i = 1, . . . , d, (30)

αt(i) = [α̃t(i)]
αH

αL , i = 1, . . . , d, (31)

where [·]αH

αL
denotes a clipping function.

end if
Output: αt = (αt(i))i=1,...,d.

end for

7

validation work. We introduce four miners in order to model a range of miners
with different performance or consensus values w̄t(i).

Let ρ > 0 denote the initial signal for miner A, and δ > 0 the jump in
signal for miner A. We assume that the signal sequences for the four miners are
piecewise-linear as follows:

vt(A) =

ρ t ∈ [0, 1)

ρ+ δt/3 t ∈ [1, 3)

ρ+ δ t ∈ [3,∞),

(33)

vt(B) = 0.5− vt(A), (34)
vt(C) = 0, (35)
vt(D) = 0.5. (36)

We assume that both validator j and k have 1 TAO stake. The three
validators adopt the following strategies:

1. Validator j does the honest work (ajt = 1) and reports the normalized
observed signals: wj

t = vt
||vt||1 . Observe that this normalization restricts ρ

to values between 0 and 0.5, and δ to values between 0 and 0.5− ρ.

2. Validator c has 98 TAO in stake and also does the honest work (act = 1)
and reports the observed signals: wc

t =
vt

||vt||1 .

3. Validator k does no work (akt = 0) and reports the observed consensus
with five rounds of delay:

wk
t =

{
[ρ, 0.5− ρ, 0, 0.5] t ∈ [0, 5)

w̄t−5 t ∈ [5,∞)
(37)

≈

{
[ρ, 0.5− ρ, 0, 0.5] t ∈ [0, 5)

vt−5

||vt−5||1 t ∈ [5,∞).
(38)

The delay of five rounds corresponds to the typical duration of the commit-
reveal weights (CRW) interval in the commitment scheme of [1]. The red
and blue lines in Figures 2 and 3 illustrate wj

t (A) and wj
t (B).

Each miner X ∈ {A,B,C,D} gets the following vector of weights for rounds
t > 5:

[wj
t (X), wk

t (X), wc
t (X)]. (39)

In turn, we have

w̄t(A) = F ((Sj , w
j
t (A), (Sk, w

k
t (A), (Sc, w

c
t (A))) (40)

CL
t = q0.25(w̄t(A), . . . , w̄t(D)), (41)

CH
t = q0.75(w̄t(A), . . . , w̄t(D)). (42)

8

Note that the small stakes for validator j and validator k are such that their
weights have negligible effect on the consensus w̄t.

4.1.1 Simulation

In this section, we assume that the validation cost is zero (µ = 0) and measure
the immediate weight-copying penalty Gt(j, k) for round t (cf. (25)). We also
measure the amplification factor H of the weight-copying penalty (cf. (32)) of
liquid alpha (Algorithm 1) on top of the commitment scheme introduced in [1].

Figure 1: Immediate weight-copying penalty G as a function of the initial value
ρ ∈ [0, 0.5] and the jump δ ∈ [0, 0.5− ρ] in the signal of miner A.

Figure 1 shows for different values of the initial signal ρ for miner A, that
the immediate weight-copying penalty G is positive and monotone increasing in
the increment δ in signal. This suggests that liquid alpha is most useful when
there is a significant increment δ in the signal of miner A.

Figures 2 and 3 show that liquid alpha (Algorithm 1) reduces of the dividend-
share of the copier (Dk

t) from the green line to the purple line.

9

Figure 2: Dynamics of wj
t (A) thus consensus (blue), wk

t (A) (red), dividend-share
to k with liquid alpha (purple) and without liquid alpha (cyan), weight-copying
penalty with liquid alpha (light-blue) and without liquid alpha (orange), and
amplification factor of weight-copying penalty (pink) when the jump in signal is
δ = 0.1.

10

Figure 3: Same with Figure 2 but with δ = 0.5.

In Figures 2 and 3, when the pink line is above 1, liquid alpha (Algorithm 1)
reduces the dividend-share (Dk

t) of the copier k. The slopes of the purple line
and green line indicate how much dividend-share the copier k accumulates with
and without liquid alpha.

In the case of a signal jump of δ = 0.5 as illustrated in Figure 3 - subfigure 1.

11

From Figure 3 - subfigure 2, we can see that Algorithm 1 gives a large reduction
in Dk

t for the weight copier (k) for 33% from 0.0071 to 0.0053 at t = 5. Figure 3
- subfigure 4 shows that liquid alpha is effective from round t = 0 to t = 18 as
the pink line at is always larger than 1.

In the case of a signal jump of δ = 0.1 as illustrated in Figure 2 - subfigure
1, From Figure 2 - subfigure 2, there is only 6% in the reduction in Dk

t for the
weight copier (k) by Algorithm 1 at t = 5. In Figure 2 - subfigure 3, observe
that liquid alpha amplifies the weight-copying penalty from the orange line to
the light blue line. However, this amplification turns into a reduction for t ≥ 8:
contrary to our objective, liquid alpha helps the weight copier k for later rounds.
The same was as well shown in Figure 2 - subfigure 4 where liquid alpha is only
effective from round t = 0 to t = 8, and fail to satisfy its objective as the pink
line goes below 1.

Figure 4: Optimal αL for different signal jump values δ and a fixed initial signal
ρ = 0. Recall that Figure 1 shows that there is negligible dependence on ρ. Note
that when αL = αH = 0.9, this would be equivalent to when liquid alpha is
in-active

12

Figure 4 shows that when the signal jump δ for miner A is 0.4, liquid alpha
with an appropriate parameter αL achieves an immediate weight-copying penalty
G of the order of 69% from 0.0012 to 0.0020. Moreover, this G is not always
maximal at a low value of αL: for instance, when the signal jump is δ = 0.1, the
optimal value of G is achieved at αL = 0.7.

Figure 5: Optimal αL for different change in weight, given that αH = 0.9. Note
that there is a symmetry pattern: the optimal value of αL for (ρ, ρ+ δ) = (x, y)
is the same as for (ρ, ρ+ δ) = (0.5− x, 0.5− y).

4.2 Empirical Subnet data
In this section, we extend the analysis from the simulated setting of to the
actual Bittensor setting using historical data. Table 1 shows that liquid alpha
reduces the duration of the commit-reveal weight (CRW) interval (cf. [1] for
definition) significantly. Moreover, any commit reveal weight interval set higher

13

than specified would result in weight copiers earning less than honest validators.
Note that Table 1 omits subnets where neither the commitment scheme of [1],
nor liquid alpha (Algorithm 1) help amplify the weight-copying penalty enough
to dissuade validators from copying weights.

Subnet CRW interval
duration

CRW interval duration
with liquid alpha

reduction optimal
αL

23 5 3 2 0.2
13 5 3 2 0.7
15 13 11 2 0.2
8 13 9 4 0.2
30 13 9 4 0.2
19 15 7 8 0.2
22 15 9 6 0.2
3 15 7 8 0.7

Table 1: Value of the parameter αL that maximizes the immediate weight-
copying penalty G (25) for different subnets during the block 2987500 to 3009100
(corresponding to the period from May 19, 2024 00:56:12 to May 22, 2024
01:10:48, UTC [6]).

5 Future Work
The following open questions remain.

1. With parameters qH = 0.75 and qL = 0.25, we see that liquid alpha does
not amplify the weight-copying penalty on all subnets due to the fallback
value of 0.9 for αt in Algorithm 1. A possible solution is to implement
adaptive values for qH and qL personalized to each subnet.

2. We would like to show that the proposed personalization of αt(i) for each
miner i does not introduce unfairness between miners.

3. We would like to characterize the convergence of the bond process for
different sequences αt in the style of [3].

References
[1] Opentensor, “Weight copying in Bittensor.” https://docs.bittensor.com/

papers/BT_Weight_Copier-29May2024.pdf, 2024.

[2] A. Rapoport and A. Chammah, Prisoner’s Dilemma: A Study in Conflict
and Cooperation. Ann Arbor paperbacks, University of Michigan Press, 1965.

14

https://docs.bittensor.com/papers/BT_Weight_Copier-29May2024.pdf
https://docs.bittensor.com/papers/BT_Weight_Copier-29May2024.pdf

[3] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint,
vol. 48. Springer, 2009.

[4] W. Güth, R. Schmittberger, and B. Schwarze, “An experimental analysis of
ultimatum bargaining,” Journal of Economic Behavior Organization, vol. 3,
no. 4, pp. 367–388, 1982.

[5] R. Weber, C. Camerer, and M. Knez, “Timing and Virtual Observability in
Ultimatum Bargaining and “Weak Link” Coordination Games,” Experimental
Economics, vol. 7, pp. 25–48, February 2004.

[6] Taostats, “Bittensor (TAO) blockchain explorer.” https://x.taostats.io/
block/2987500, 2024.

15

https://x.taostats.io/block/2987500
https://x.taostats.io/block/2987500

	Introduction
	Model
	Yuma Consensus and utility functions
	Weight-copying penalty
	Harmless or beneficial to miners

	Liquid alpha solution
	Empirical evidence
	Simulated setting
	Simulation

	Empirical Subnet data

	Future Work

